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Abstract. The classical path method is used to derive the W K B  energy levels and wavefunc- 
tions for the periodic potential. The method generalises the instanton approach and can 
accommodate excited-state energy bands in addition to the ground-state band. 

1. Introduction 

The semiclassical approach to quantum mechanics becomes appropriate when the 
classical action is large compared with Planck's constant [l]. The natural way to 
express this is in terms of the Feynman path integral [2,3]. The semiclassical approxi- 
mation is the path integral evaluated considering only Gaussian fluctuations about the 
classical path. The WKB method also includes certain non-Gaussian fluctuations [4]. 

The WKB or semiclassical approximations are particularly useful in situations where 
quantum mechanical tunnelling is important. Barrier penetration is a phenomenon 
of fixed energy and thus we look at the energy Green function rather than the fixed 
time Feynman propagator. Tunnelling presents a problem for the path integral 
approach; the classical solutions to Newton's equations in the tunnelling regime require 
the use of imaginary time [ 5 ] .  The classical path method has recently been developed 
[4] and treats all the solutions of Newton's equations in complex time in a unified 
way. The difficulty of solving problems in the classical path approach (or any other 
semiclassical method) is related to the topological complication of the classical paths. 
The linear potential, the quadratic potential well and barrier, together with the quartic 
double-well potential, were treated in the original paper on classical paths by Carlitz 
and Nicole [4]. More complicated potentials arising in the spontaneous breakdown 
of supersymmetric quantum mechanics were considered by Carlitz [6]. In this paper 
we treat the problem of the periodic potential, specifically the pendulum potential. 
Any periodically repeated bounded potential will have the same classical path structure 
and consequently the solution will have exactly the same form as that for the pendulum 
potential presented in this paper. However, we choose to specialise in the pendulum 
potential, because the solutions can be written explicitly and the action integrals 
evaluated exactly. 

The pendulum potential is important because it is the simplest example (apart from 
the free rotor) which has significant topological complications. Thus classical solutions 
for the pendulum which just swings back and forth cannot be continuously deformed 
into solutions which have tunnelled around the centre of rotation with the same start 
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and end points. Therefore, the classical solutions fall into distinct classes identified 
by the winding number, which is the net number of ‘rotations’ about the centre. Similar, 
but generally more complicated examples, requiring homotopy theory for their 
classification, occur in field theory [7]. It is important to have a clear foundation in 
quantum mechanics before being satisfied with the generalisation in field theory. 

In tackling this problem we will generally look on it as an ‘electron’ in an infinite 
periodic lattice, rather than a pendulum whose motion is restricted to a circle. Successive 
winding numbers for the pendulum now correspond to the particle tunnelling to 
adjacent lattice sites. The two problems are different but the solutions are closely 
related. Each energy level for the pendulum is spread out into a band in the problem 
of the infinite lattice. 

The bound-state energies and wavefunctions obtained by the classical path method 
will be exactly the same as the WKB approximation to the solution of the Schrodinger 
equation. This problem has also been treated by Millard [8], although our approach 
is different. She gives a solution valid over a wider energy range, whereas we concentrate 
on understanding the detailed structure of the problem within the classical path method. 
The advantage of the classical path method lies in its convenience of application to 
complicated, and particularly multi-dimensional, problems. In this regard it is com- 
pared with the instanton approach which it generalises [4,7]. 

Froman [9,10] has developed a phase integral formula which has some advantages 
over the WKB approximation. This is particularly evident in circumventing the connec- 
tion problems and the associated Stokes discontinuities which arise in the WKB 

approach. The classical path method is a version of the WKB approximation and retains 
the Stokes discontinuities. However, we deal with the connection problems in a more 
efficient manner than the conventional approach. This method makes the origin and 
nature of the asymptotic expansion and its Stokes jumps clear. 

The paper is organised as follows: in the next section we review the steepest descent 
approximation for the energy Green function, which lies at the heart of the classical 
path method. In § 3 we describe the classical paths for the pendulum and evaluate 
the WKB action for these paths. In § 4 we evaluate the semiclassical bound-state energies 
without considering the exponentially small tunnelling terms. The complication of the 
periodic potential problem arises from classifying the contributions from all the multiple 
tunnelling terms. How this is achieved, together with the evaluation of the sum over 
paths, is outlined in 0 5. As previously mentioned, these results are valid for any simple 
periodic potential. The band energies obtained agree with those previously achieved 
by direct approximation of the Schrodinger equation. These results are compared with 
the tight binding approximation and the instanton approach. 

2. Review of the classical path method 

The starting point for the classical path method is the semiclassical approximation to 
the Feynman propagator [2] in one space dimension, 

where +cl is a classical path from 4i to 4f in time T and S,, is the corresponding 
classical action. The factor D arising from the Gaussian integrals also has a classical 
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interpretation [2]. If we imagine all the classical paths emerging from r$i, each classified 
by its energy, then the factor D can be interpreted as the density of these classical 
paths at the final position 4f. Explicitly, D is given by the expressions [2, 111 

The Gaussian approximation for K becomes inadequate near ‘focal points’-where 
the density of classical paths D becomes singular. Thus it is important to observe that 
in Carlitz and Nicole [4] the singularities of K are found to make no contribution to 
the energy Green function G and thus their exact treatment is not required even though 
the contours in the complex T plane used to evaluate G pass through these singularities. 

Classical turning points typically are not focal points as the zeros of dCl are cancelled 
by a zero of aE,,IaT. Classical turning points do require careful treatment of non- 
Gaussian fluctuations in the derivation of the G from K. K(4f,  $J~; T) as given by 
(2.1) is an approximation to the exact kernel which can be defined as a functional 
integral. 

The classical path method works with the energy Green function G, defined as the 
Laplace transform of the Feynman propagator: 

G(+f, 4i; E)=’ ih /omdTexP(iET/h)K(df ,  4i; T). (2.3) 

The idea underlying the method is based on work by McLaughlin [5]. He developed 
an analogy between the Feynman path integral for the kernel K and contour integral 
representations of special functions. Specifically, he demonstrated that it was possible 
to analytically continue the function space integral K with respect to the time parameter 
T. The integral (2.3) was then shown to be independent of the contour in complex 
time, provided the singularities of K were avoided. This allows the treatment of barrier 
penetration, whose classical solutions require imaginary time, within the path integral 
method. The approximation technique now depends upon selecting a suitable contour 
from which the asymptotic behaviour can be extracted. We note that the semiclassical 
approximation (2.1) retains the same form when the Gaussian integrals are evaluated 
along an arbitary path in complex time [ 5 ] .  Hence, specialising in one particular 
classical path and substituting the semiclassical approximation, equation (2.3) becomes 

This integral is now evaluated by distorting the contour into complex time. Typically, 
the exponential term will oscillate producing cancellations, thus making a systematic 
approximation difficult. The steepest descent method chooses a contour to eliminate 
these unwelcome oscillations. There are some subtleties in this procedure and these 
will be explained shortly. However, it is clear that the main contribution to the integral 
occurs near the critical or saddle points, where the complex time derivative of the 
exponent vanishes. This gives the condition 

E = -aS,,/aT= E,,. (2.5) 
The saddle points T, are the times for which a classical trajectory of energy E can 
pass from bi to 4f. If the motion is periodic then there will be an infinite number of 
saddles T,. In general, the Gaussian approximation for K becomes inadequate near 
‘focal points’ where the density of classical paths D becomes singular. Let us consider 
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for clarity the simple example of the harmonic oscillator, described in Carlitz and 
Nicole [4]. Here, the action is given by 

( 2 . 6 ~ )  

The Gaussian result for K is in fact exact, and given by 

The focal points in the complex- T plane are the singularities of K ,  given in our example 
by wT = n r .  Paths of various energies setting off from 4i at time T = 0 reconverge 
after multiples of half a classical period. In this example the Gaussian approximation 
correctly reproduces genuine singularities of K .  For more complex systems, the 
Gaussian approximation will predict singularities in K at each singularity of Scl. These 
may not, however, be present in the exact K. They are typical of the spurious analytic 
behaviour exhibited by asymptotic approximations away from their range of validity. 

Let us first consider the harmonic oscillator, where we have already established a 
sequence of focal points given by w T  = nn-. We choose the initial and final positions 
in the classically inaccessible region on opposite sides of the potential. This means 
that the saddle points, corresponding to classical paths, will move into the complex-time 
plane because of tunnelling. Now the real time elapsed must be Re(wT) = (2n + 1)n-, 
i.e. the time to cross the allowed region plus any number of additional whole periods. 
Distorting the contour to pass through the saddles gives a picture very like that shown 
in figure 8 provided we identify K = i7~  and K‘ = W. The path breaks up into an infinite 
number of separate saddle contributions. Generally, we will evaluate the integral (2.4) 
in a similar way. The contour is deformed so as to pass through saddles of Scl following 
steepest descent trajectories which end at focal point singularities of Scl. A typical 
path then falls into several separate saddle contributions as just described for the 
harmonic oscillator. Following the method of Dingle [12] we define a new variable f 
which measures distance along a saddle contribution: f = + ~  at the terminal sin- 
gularities and f = O  at the saddle. For a single saddle contribution 

iWcl(T)= h h (ET+S, l (T) )=i[ETs+S, , (Ts)] - f2  h 

and f 2  can be expanded by Taylor series as 

+. . . )  

(2.7) 

In general the saddles Ts will be complex with the steepest descent contour defined 
by the condition 

I m f 2 =  0 or Re Wcl( T)  = Re Wcl( T,) = constant. (2.9) 

Recall that at focal points dE/dT becomes infinite and so f becomes singular. There 
will be an infinite number of saddle points on a typical classical path 4c l (T)  as the 
time increases to infinity. The Green function can now be written 

classical path 
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with 

d T  2i f 
df -h(E+aS, , /dT)’  
_- (2.106) 

Not all the saddle points correspond to physical motions and some care must be taken 
in choosing which saddles to include in the summation. To see how this arises we 
express the elapsed time and WKB action W in terms of the energy and the complex 
path. Energy conservation gives the condition 

E = d2/2A + V(4)  (2.11) 

where V is the potential. Thus we can write the time and WKB action as 

( 2 . 1 2 ~ )  

(2,126) 

where pe l (  t )  is the classical momentum along the path (pe l  = & / A ) .  Notice that these 
expressions contain a square root branch point at turning points (&  = 0 or E = V). In 
the simple case of the harmonic oscillator there are only two turning points. To make 
these expressions unambiguous we define the position, 4, on a suitable Riemann 
surface. However, we now have an ambiguity over which sheet the initial and final 
positions should be assigned. The physical positions are chosen by two criteria. First 
the physical motion moves forward and hence the real part of the time must be positive. 
The second criterion requires that tunnelling be suppressed and this demands that the 
imaginary part of the action W be positive. However, non-physical motions rejected 
by these conditions will still give rise tospurious saddle points. 

To evaluate the integral (2.10a), J D  dT/df is expanded as a Taylor series in f ,  
giving a leading contribution 

(2.13) 

Notice from equation (2,106) that dT/df becomes singular at the saddle point closest 
to the saddle at T,. This saddle may be non-physical, but it nevertheless controls the 
radius of convergence of the Taylor series for f i  dT/df: This radius of convergence 
will be inside the infinite range of the Gaussian integration, which means that the 
series we obtain for the energy Green function will be an asymptotic rather than a 
convergent series [ 121. This technical misdemeanour, of integrating a series term by 
term beyond its radius of convergence, is Dingle’s [12] approach to generating 
asymptotic expansions. This technical error can be precisely reversed by the technique 
of (modified) Bore1 resummation. Despite its divergence, the first term in the asymptotic 
series will provide a good approximation when the singularities of dT/df occur for 
large f ,  as the Gaussian exponential will make the integral negligible well before the 
questionable region is reached. Thus if T: is the nearest saddle to the saddle point T, 
we require 

I Wed T:) - WCd TJI >> h. (2.14) 
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When this condition is satisfied the first term in the asymptotic series provides a good 
approximation. Thus our basic formula for the energy Green function is 

(2.15) 

For condition (2.14) to be satisfied we require that the classical turning points be well 
separated from each other and from the initial and final positions. Thus the steepest 
descent approximation for the one-dimensional integral (2.3) breaks down when the 
turning points begin to coalesce (near the top and bottom of the potential well). 
However, the semiclassical approximation remains valid in these circumstances. 
(Recall that it becomes inadequate near focal points.) Thus the integral (2.3) may be 
evaluated by other conventional techniques. 

Expression (2.1 5 )  represents a typical asymptotic approximation. The right-hand 
side has extra singularities, away from the domain of validity of the approximation, 
not contained in G(4f, q5i; E ) .  Additionally, as +i, q!+ and E vary, the set of physical 
saddles jump on or off the physical contour. The resultant Stokes jumps in the 
approximation serve to repair the analytic behaviour of the approximation in its domain 
of validity. 

Formulae (2.15) corresponds to the path integral version of the WKB approximation. 
It is valid when the classical turning points are well separated; in fact, it reproduces 
the WKB result for systems with isolated turning points. The classical path method is 
not limited to this case. When the turning points approach each other, the Laplace 
integral summing the contribution of all the relevant classical paths can be evaluated 
as shown by Carlitz and Nicole [4]. This allows the derivation of the WKB result with 
quadratic turning points and we will quote their results where relevant. 

3. Classical paths for the pendulum 

In order to put into effect the procedure for the classical path method outlined in the 
previous section, a number of preliminary quantities and properties must be established. 
We organise this section into subheadings with this in mind. We begin with the 
notation, equations of motion and basic solutions to the pendulum motion. The next 
subsection establishes the focal points of the motion. This is essential preparation for 
deforming the contour into complex time. Formulae (2.15) also requires that the WKB 

action be evaluated. The procedure for achieving this is outlined in § 3.3. Finally, the 
enormous variety of classical paths are classified in 0 3.4. The various sums over 
physical paths required in formula (2.15) will then be carried out in $ 9  4 and 5. 

3.1. Notation 

We take the Lagrangian for the simple pendulum as 

where 4 ( t )  is the angular displacement. The equation of motion is 

i ( t )  = --w2sin 4. 
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The classical solution is given in terms of Jacobi elliptic functions with modulus k, by 
the equation 

(3.3a) 

where k and (Y are variables of integration corresponding to amplitude and phase. 
The corresponding conjugate momentum is given by 

p ( t ) = d ( t ) / h  =(2kw/h) cn(wt+a;  k). (3.36) 

sin (+$I( t ) )  = k sn(wt + a ;  k) 

3.2. Determination of the focal points 

For small amplitude oscillations we know that the pendulum is approximated by the 
harmonic oscillator. For the harmonic oscillator the trajectories reconverge after 
multiples of a half period, as discussed in the previous section. For the pendulum 
motion the paths also cross every half period (2K where K, the quarter period, will 
be defined shortly). However, unlike the harmonic oscillator the focusing is not perfect. 
These focal points are not true singularities of the propagator but just artefacts of the 
semiclassical method. Nevertheless the propagator will be large and in the classical 
path method this is all that is required. The elliptic functions are doubly periodic and 
so it is reasonable to predict that focal points will also occur in imaginary time at 
multiples of the imaginary half period (i.e. 2K’). These results will now be established 
more explicitly. 

In determining the classical action SCI we require the classical path that moves from 
qbi to qbf in time T. This demands that the initial and final conditions are given by 

( 3 . 4 ~ )  sin(fqbi) = k sn a 

and 

sin(&4f) = k sn(wT+ a )  

sn(wT)(k cn a dn a)+sin(&qbi) cn(wT) dn(wT) 
1 -sin2(qbi/2) sn2(wT) 

(3.4b) 

We have dropped the explicit reference to the modulus k in the elliptic functions and 
substituted the initial condition (3.4a) into the expansion for the final condition. The 
classical solution incorporating conditions (3.4) can be expressed as 

- - 

sin(&(t)) = k sn(wt+ a )  

A( T )  sn(wt)+sin(+qbi) cn(wt) dn(wt) 
1 -sin2(+qbi) sn(wt) 

( 3 . 5 ~ )  - - 

where 

A( T )  = k cn a dn a = 
1 - sin2(&bi) sn2(wT)] - sin($qbi) cn(wT) dn(wT) 

sn(wT) 
(3.5b) 

Notice that there are singularities in the solution due to the singularities of A( T ) .  One 
set of these singularities occurs at the zeros of the elliptic function sn(wT) at 

w T  = 2nK +2imK‘ (3.6) 
where m and n are integers and K and iK’ are the real and imaginary quarter periods, 
respectively. These singularities correspond to the focal points suggested at the start 
of this subsection. 
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3.3. Evaluation of the W K B  action 

The starting point for evaluating the W K B  action is the energy conservation equation. 
We note that the total energy E determines the value of the modulus k, 

E = f A p 2 + ( 2 w 2 / A )  sin2($+) = 2 ( k ~ ) ~ / A .  (3.7a) 

Also, equivalently, if +o is a turning point we have 

k = sin(&,). (3 .7b)  

The energy equation (3 .7a)  can now be rewritten in terms of the velocity as 

Q 2 (  t )  = 4w2[  k2 - sin’(:+)]. (3.8) 
Hence the expression for the time T evaluated along some path defined on a suitable 
complex Riemann surface for + is 

The branch points of the square root velocity factor occur at turning points, some of 
which are shown in figure 1. Figure 2 shows a two-sheeted Riemann surface for 4, 
where we have chosen to cut the surface between the turning points along the forbidden 
region. As discussed in P 2 it is convenient to choose the initial and final positions in 
the forbidden region as shown in figure 1. There is an ambiguity on which side of the 
cut to choose +i and +f and this results in spurious non-physical saddle points as 
discussed in § 2 .  Distinct paths will circulate the turning points tracing out very 
complicated curves. These paths will, nevertheless, be made up from arbitary multiples 
of pieces equivalent to the loops a and p shown in figure 2 .  The path a corresponds 
to a complete period of real oscillation, while the loop p represents a complete back 

-(2IT+do) - 2 R  - 2 R + @ 0  di - 0 ~  0 

Figure 1. The periodic potential. 

4 k 

- 2 n + Q o  

Figure 2. The Riemann surface for the variable 4, showing cuts as wavy lines between the 
turning points along the forbidden region. 
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and forth tunnelling through the forbiden region. The times for these loops are given 
by the full real and imaginary periods which are given by the integrals 

wT, =&le d $ ~ [ k ~ - s i n ~ ( & ) ] - ” ~ = 4 K  

wTp = &jp d+[ k’ - sin*(f+)]-”’ = -4iK 

( 3 . 1 0 ~ )  

(3.10 b )  

The integrals in equation (3.9) are more easily identified as elliptic integrals in terms 
of a new variable + defined by 

sin($$) = k sin + (3.11a) 

pb = (2wk/A) COS +. (3.1 1 b )  

Figure 3 shows the new Riemann surface for 4. Notice that when + is real, T is also 
real. The equation for the time now becomes 

w T  = [ ’‘ d+( 1 - k2 sin’ i,b)-1’2, (3.12) 
J $1 

In terms of the new variable the 

where k’ is the complementary modulus given by kf2 = 1 - k2. 
The most important quantities for determining the bound-state energies are the 

WKB action evaluated for the closed loop paths (Y and p, which from (3.13) can be 
shown to be 

( 3 . 1 4 ~ )  W, = ( 1 6 w / h ) ( E  - kr2K)  E 2hw, 

Figure 3. Riemann surface for the variable $. The turning points correspond to the junction 
of the cuts and the real axis. The broken curve represents the portion of the contour on 
the lower sheet. 
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and 

W, = (16io/A)(E’- k 2 K ’ )  = 2ihA (3.146) 

where K and E are the complete elliptic integrals of the first and second kind; K’ 
and E‘ have the modulus k replaced by the complementary modulus k ’ .  

The physical path of minimum real and imaginary time is shown in figure 4. The 
time and action required in tunnelling from the initial position +i  to the turning point 
L at -& are denoted by UT, = - i l l i  and Wi = ihA. Similar notation with f replacing 
i is used for the right-hand tunnelling motion. The exact expressions can be evaluated 
but are not necessary for our results. 

3.4. Classijcation of classical paths 

Physically, the allowed motions are easy to identify. First, the paths fall into four 
categories depending on whether the motion starts or ends moving to the right or left. 
It is, however, more complicated to classify and count all the multiple tunnelling terms 
and this will be postponed until 5 5 .  In the rest of this subsection we will relate these 
preliminary categories to the solutions and times derived earlier in this section. 

We can now return to the solution (3.3) and observe that the initial condition (3.4a) 
can be satisfied by 

a,=-K*ill ,  (3.15) 

lb I 
Figure 4. The path of minimum real and imaginary time ( a )  for the variable 9 and ( b )  
for the variable $. 



Classical paths for the periodic potential 2361 

(recall that +i is negative). Now as time develops the solution will pass through the 
final position +f at the saddle times T, given by 

sin(ldf) = k sn(wT,+a).  (3.16) 

This predicts the saddle times 

UT, = 2(2n + l ) K  + 2imK’-i(*ni * nf). (3.17) 

Not all these saddles correspond to physical motions. Consider first the sequence of 
critical points 

oT l=2(2n+1)K - i (Q+n,)  n =0,1 ,2 , .  . . . (3.18) 

The corresponding paths in the CC, plane for n = 0 and 1 are shown in figure 5 .  The 
ambiguity over which side of the cut to choose the initial and final angles +i and +f 

translates in the $ plane into both $i and its complex conjugate $7 satisfying the 
initial (and final) conditions. Consider path I1 shown in figure 6. It can be seen that 
the time elapsed is 

UTrl = -i(K’ -ai) - 3iK’+2K - 3iRf 

= - i (Rf-Ri)+2K -4iK’. (3.19) 

Figure 5. Two possible paths on the + Riemann surface which elapse minimum imaginary 
time. The longer path elapses an additional period of real time. 

Figure 6. Two possible complex paths on the $ Riemann surface. 
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Figure 7. Another possible path on the rL Riemann surface for which the elapsed real time 
is a minimum. 

Path 111 shown in figure 6 is interpreted in a similar way and corresponds to an elapsed 
time 

wT,,, = i(flf-Cli)+2K -4iK‘. (3.20) 

Figure 7 shows another distinct physical path which requires a time 

wTlv = i ( f l f+  ai) + 2K - 8iK’. (3.21) 

Paths I,  11, 111 and IV are the four categories of path outlined at the start of this 
subsection. More complicated paths are built up from these by further circulation of 
the turning points and this is equivalent to adding any number of a and p loops. 

4. Pendulum motion excluding tunnelling terms 

The pendulum potential is like the harmonic oscillator but with less steep sides. This 
difference in shape causes the energy levels to shift down. In this section we concentrate 
on calculating the size of this shift. In this approximation, which neglects tunnelling, 
the classical paths are exactly the same as those for the harmonic oscillator. Con- 
sequently, the form of the energy Green function is also exactly the same. Because 
an extensive analysis of this is given in [4] we only briefly outline the method for 
deriving the energy Green function in these circumstances. 

We consider paths of type I which begin and end on opposite sides of the potential. 
The saddle times are given by equation (3.18) in the previous section. These are 
displayed in figure 8 with a suitable contour through the saddles. From the basic 
formula (2.15) we have [4] 

where a minus sign is picked up from the square root velocity term on each complete 
LY circuit, due to passing two turning points. Summing the geometric series and noting 
from figure 4 

di = 2w exp($i.rr)[sin2(f4i) - k2]”2 

df = 2w exp($i.rr)[sin2(f4f) - k2]”2 

(4.2a) 

(4.2b) 
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I IWT 

-Kfi x X X 

X " : 0 0 0 0 

X X x 

Figure 8. The complex time plane showing the steepest descent contour through the saddles 
from paths of type I. Singularities are represented by full circles and some other saddle-point 
positions are marked by crosses. 

Poles in the propagator occur at the bound-state energy levels, which occur at the 
zeros of cos w,. This gives the Bohr-Sommerfeld quantisation condition 

w e /  7r = 1 (2n + 1 ) .  (4.4) 

Notice that this gives levels with both positive and negative energies. This is of course 
wrong. As the energy moves towards the bottom of the potential well, the turning 
points approach and our simple formula breaks down. In this case we must make the 
replacement [4] 

1 
( 1/2 COS U,  ) + K ( E )  = r(; - / 7 r )  - (2 rr ) (4.5) 

K ( E )  has positive energy poles in the same positions as (1/2 cos w , )  but no negative 
energy poles. We note that the results so far presented are valid for any sufficiently 
smooth non-singular potential. Specialising in the pendulum and writing m = k2  the 
quantisation condition gives 

Ah(2n+1)/8w =2(E-m1K)/7r with m, = 1 -in 

+ [ ( l  x 3 x , . , x (2n + 1))/(2 x 4 x .  . . x 2 n ) l 2 [ m " / ( n  + 1 ) 3 + . .  .). (4.6) 

Writing y = (2n + l)(Ah/4w) we can invert the series to obtain the energy 

+. . * ) .  y y 2  5 y 3  33y4 252y5 
E:  =2w2m/A = (2n + l)(;hw) 1 

218 23 26 210 214 (4.7) 
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n.2 

n = l  

The first term is clearly the ordinary harmonic oscillator energy. The corrections 
correspond to the large-n limit of the exact asymptotic expansion in the region 
E<< 2w2/A, i.e. m<< 1 [13-151. This is as we expect for a semiclassical method. 
Corrections arise from the approximate Feynman kernel (2.1). In this case approxima- 
tion of (2.4) by steepest descent does not affect the position of poles of G (apart from 
excluding those of negative energy). However, in general this approximation will also 
make a contribution to the error. 

We now consider paths which start and end on the same side of the potential. With 
the angle the same as previously this will occur for winding number v = -1 (4;'  = 4 f  - 
2 ~ ) .  Figure 9 shows some of the simplest paths for this case. The saddle times are 
given by 

UT,=  -i(&-Cli)-2iK'+4nK. (4.8) 

This sequence of saddles is shown in figure 10. The additional saddle drawn on the 
diagram corresponds to the direct passage from the initial angle 4i to the final angle 
(4~~-27r) .  It is, however, excluded from this sum over saddles because the path 
approaches the final angle from the left. The first critical point we consider corresponds 
to a reflection in the forbidden region. Notice that the path through the critical points 
approaches this saddle by a descending ridge, at which it takes a 90" bend and proceeds 
along the steepest descent path to the next focal point (which corresponds to -I$~ - 2 ~ ) .  
Consequently, this saddle point is assigned a weight factor of 4. This is a reflection 
of being precisely on a Stokes discontinuity where the form of the asymptotic expansion 
abruptly changes [12]. Following the paths shown in figure 11 we see that the square 
root velocity factors have opposite signs for the first and second terms. All subsequent 

. 1- 
I 

- 1  
C . . . 

. 11 I 
I I 

, 
I . 

- i !  I D +  

r 
2n +,-2n 9, +f 

( a )  

Figure 9. ( a )  The periodic potential with the simplest path of winding number -1, which 
never emerges from the forbidden region. ( b )  The elapsed real time for the paths,of winding 
number -1 but with one and two bounces in the allowed region and the same imaginary 
time as in ( a ) .  
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t 

Figure 10. The relevant saddles and contour in the complex-time plane appropriate for 
winding number -1 and the sequence of paths indicated in figure 9. 

(a  1 

Figure 11. The two simplest paths of winding number -1 on the Riemann surface ( a )  for 
4 and ( b )  for t+k 
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critical points contribute an additional minus sign for each full loop around the turning 
points [4]. Hence, we have for this sequence of saddles 

(4.9) 

Observe that the pole positions are the same as the zero winding number case. We 
can now now make use of these two results to construct the full propagator including 
the effects of tunnelling. 

5. Tunnelling and band energies 

The essential difficulty in implementing our basic formula (2.15) is to enumerate all 
possible motions to be included in the sum. How this can be achieved is shown in 
the appendix. However, the approximation scheme we employ does not require the 
full result. We divide this section into subsections.. The first gives the calculation of 
the energy Green function. The next subsection gives the result for the energy bands 
together with the conditions for this to be valid. In the final subsection we give an 
interpretation of the approximations we make together with the wavefunctions. 

5.1. The energy Green function 

We begin by considering paths of zero winding number of type I. Figure 12 shows 
some representative paths classified by the number of complete back and forth transits 
through the forbidden region. Each of the partial motions pictured for the allowed 
regions stands for an infinite sum of paths. These sums were calculated in the previous 
section for the two different cases where the motion starts and finishes on the same 
or opposite side of the potential. Our approximation will neglect any difference between 
these two cases. Noting that each type of path occurs an even number of times and 
comparing equations (4.3) and (4.9) we see that this requires sin' w, = 1. In § 4, where 
tunnelling was ignored, this holds exactly at the energy levels. Provided tunnelling 
shifts the levels by exponentially small amounts this will be a good approximation 
(see the appendix for further justification). The physical consequences of this condition 
will be given in the next subsection. 

Given this approximation we now need to calculate the weight factor corresponding 
to the number of different ways of obtaining terms with the same degree of suppression. 
This is shown explicitly for the first three cases in figure 12. The general case is 
calculated by representing each passage through the forbidden region as a step in a 
random walk. With a total of 2n steps, n to the right and n to the left, the total number 
of possibilities is 

Now formula (2.15) gives the partial propagator as the sum 
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+I-+, +o+, 

Figure 12. A sample of the classes of paths involving zero, one and two complete back 
and forth tunnellings through the forbidden region. A representative one or two back and 
forth bounces in each allowed region are shown, but we must remember that all possible 
numbers of bounces must be summed over. In the lower illustrations, paths whose sums 
are the same are grouped together. 

Writing 

x = e-"/cos om 

and substituting the integral expression for ( 2 n ) !  we obtain 

X 

= G:(+f, +L E ) [  e-' Zo(xt) dt. 
0 

(5.3) 

This integral is easily evaluated; however, it is already in a convenient form for our 
purposes as will be shown presently. 

In the same approximation scheme we will now consider the expression for the 
terms in the propagator corresponding to non-zero winding number. For positive 
winding number v the final angle is 4; = 27rv + q5p For 2n transits through the forbidden 
region, in addition to the v for the winding number, we have n + v steps to the right 
and n steps to the left. The total number of possibilities is therefore 

2 n + v  2 n + v  ( n ) = ( n + v )  ( 5 . 5 )  
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In the case of negative winding number Y = -g we have exactly the same situation 
with left and right reversed. The total number of possibilities is 

(2nn+g). 

Hence we can now write the propagator for winding number v, again only for paths 
of type I, as 

(5.7) 

= Gg(4f, 4i; E )  J e-'l,(xt) dt. 

The Feynman path integral demands that we sum over all possible paths between 
the initial and final angles. Recall that, when interpreted as a pendulum confined to 
a circle, the paths fall into disconnected classes represented by the winding number. 
An arbitary phase factor will therefore arise for each disconnected class of paths in 
the Feynman sum over histories. However, the symmetry of the system reduces this 
arbitariness to a single phase factor 6 between successive winding number contributions 
[2]. This idea is crucial in obtaining a band of levels. The demonstration of this result 
in [2] hinges on the fact that the proof that the path integral satisfies Schrodinger's 
equation is a local one. Hence the propagator for each winding number should 
individually satisfy the Schrodinger equation. This forms the path integral version of 
Bloch's theorem. In fact, for Bloch waves, on translating the wavefunction from one 
lattice site to the next, the phase should advance by 2.rrkc-4, where k is the wavenumber 
and a the lattice spacing. This factor of 2 r k a  is identified with the phase S. We can 
now write the full propagator as 

0 

(5.10) 

Substituting for Gg and x, expression (5.10) becomes 

exP[-(Ai + &)I 1 
G1(4f' "' E)=2hw{[sin2 (46,)- k2][sin2 (i4i)- k 2 3) 1/4 [cos w, -cos 6 exp(-A)]' 

(5.11) 
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5.2. Energy levels for the pendulum 

The energy levels are given by the poles in (5.11) which occur when 

cos w, = cos 6 exp(-A). (5.12) 

It is important to realise that the derivation of this result was independent of any 
specific properties of the pendulum potential. It will apply to any sufficiently smooth 
bounded periodic potential. 

We will now present the general result for the bandwidth. Since we wish to have 
results valid near the bottom of the potential well, where the turning points merge, we 
make the replacement given by equation (4.5). It is then possible to see that the 
bandwidth is given by 

The frequency for the approximate oscillator at the bottom of the potential well is w 
and A is a more general integral around the turning points in the forbidden region 

(5.13 b )  

where p is the generalised momentum. Recall that at the beginning of 0 5.1 we made 
the approximation that the tunnelling factor A was large. Consequently, the tunnelling 
probability is small and so we require either tight binding or widely separated potential 
wells. Result (5.13) is identical to that derived by Harrell [16] from a rigorous analysis 
of the differential equation. 

We now return to the specific case of the pendulum potential and recall from 
(3.14 b )  that 

8 W  

Ah 
A = - ( E ’ -  k * K ’ ) .  (5.14) 

Now using the expansions for the elliptic function we have the explicit expression 

E ’ - k 2 K ’ =  l+am(ln m -41n2-l)+&m2(ln m-41n2+;) 

l x 3 x  . . .  x(2n-1)  
n = 2  

x [ l n m - 4 l n 2 + 4 ( 1 - 5 + + .  . . - 1 / 2 n ) - l / ( n + l ) ]  (5.15) 

Substituting for the value of m from equation (4.7) which neglects tunnelling we obtain 

E ’ -  k ’ ~ ’ =  1 -ay+&y2+ .  . .+aycl + 0 ( y 2 ) )  In y(1 - $ y )  - y(1 + 0 ( y 2 ) )  In 2 + .  . . . 
(5.16) 

As we wish our results to be valid near the bottom of the potential well we again make 
the replacement given by equation (4.5). Hence we obtain the band of levels 

E,  = 

4w 
(5.17) 

This agrees with the results obtained by Goldstien [14], Dingle and Muller [15] and 
the bandwidth presented by Stone and Reeve [13]. Also, if we specialise in the 
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ground-state result, we obtain exactly the instanton result, plus a correction to it [7, 171. 
The correction is of the correct sign but somewhat smaller than the actual value [14, 
15, 171. This is quite reasonable as we only expect the method to give the corrections 
in the semiclassical large-n limit. We also note that, specialising in the case when the 
Bloch phase 6 = 0, we obtain the result for the simple pendulum. 

Remember that at the beginning of this section we made the approximation that 
the tunnelling factor A was large. This was because we require cos w, to be small, an 
assumption that is now seen to be consistent with (5.12). Notice that the scale factor 
multiplying the elliptic functions in (5.14) is 8 w / A A .  Thus, examining equation (5.15), 
we see that provided m is small A >> 1 implies 8 w / A h  >> 1. At the top of the potential 
well, where this condition breaks down ( m  = 1 and A = 0), we also note that the 
saddle-point method fails because the turning points coalesce. 

We now summarise our results and their limitations. Observe that other sufficiently 
smooth bounded periodic potentials are solved by equations (4.4) and (5.12), provided 
the expressions w, and A of ( 3 . 1 4 ~ )  and (3.14b) are replaced by the corresponding 
more general action integrals. We have shown that equation (5.17) together with 
equation (4.7) give a good approximation to the bound-state energies of the pendulum 
provided 

Equations (4.7) and (5.17) provide good approximations given the above criteria, but 
we also note that for small n other corrections become important. For each order in 
the ( A h / 8 w )  series, additional terms in lower powers of n will occur. A measure of 
the size of these corrections to (5.17) is given by the discussion following equation 
(5.17). For the corrections to equation (4.7) for small n we refer the reader to [13]. 

( 8 w l h h )  >> 1 and m = ( EA/2w2) << 1. 

5.3. Interpretation of the results 

We now find the wavefunctions in order to provide a basis for comparing our results 
with other methods. To achieve this we must complete the calculation by including 
the contributions from paths of types 11, I11 and IV. This is straightforward. Calcula- 
tions along the lines already given for paths of type I give 

ex~[- (A-Ai) l  exp(-Af) exp(i6) 
G"('f' '" E)=2hw{[sinZ (fq5,) - k2][sin2 ( j~$~)  - k 2 I} 1/4 [cos w, -cos 6 exp( -A) ]  

( 5 . 1 8 ~ )  
exp[-(A - &)I exp(-Ai) exp(i6) 

G11'(4fy "' E)=2hw{[sin2 ( f ~ $ ~ ) - k ~ ] [ s i n ~  ( f c b i ) -  k 2 I} 1 /4  [cos w, -cos 6 exp(-A)] 

(5.1 8 6)  
ex~[- (A-Ai) l  ex~[-(A-Af)l  exp(2i6) 

G'V(4f' 'i; E)=2hw{[sin2 (+4f) - k2][sin2 (444 - k 2 ]> 1/4 [cos w, -cos 6 exp( -A)] '  

( 5 . 1 8 ~ )  
The full propagator can then be written as 
G(4f, 4i; E ) =  G1+G"+G"'+G'"  

exp(-A){exp(fA- A,) +exp(i6) exp[-(fA-Af)]> 
x (exp(4A - A i )  + exp (is) exp[ - (+A - Ai)]) 

2hw{[sin2 (fq5f) - k2][sin2 (&J - k 2 ] } ' / 4 [ ~ ~ ~  U,  -cos 6 exp( - A ) ]  
- - 

(5.19) 
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exp( -iA){exp[(iA - Af)]  + exp(i8) exp[ - (4A - Af)]} 
+ n ( 4 f ) =  

2371 

Hence we obtain the WKB wavefunctions in the forbidden region to be 

(5.20) 

These results can be compared with the approximate wavefunctions given in [ 141. The 
first term can be interpreted as a decreasing wave coming from the left while the second 
term is a decreasing wave coming from the right with an arbitary phase difference 
between them. The denominator contains the usual WKB velocity factor. These results 
can also be interpreted in terms of the Bloch wavefunctions of the tight binding 
approximation [ 181. The first term roughly corresponds to a ‘harmonic oscillator type 
orbital’ centred on 4 = 0, while the second term corresponds to a similar nearest- 
neighbour ‘orbital’ centred on 4 = 27r, together with its Bloch phase. All the other 
terms have been neglected in the approximation because the tunnelling factor is much 
larger than one. This explains why the expression for the energy only contains terms 
in cos 6. If we included more than nearest-neighbour orbitals, the expression for the 
energy band would contain higher Fourier components. These will become more 
important close to the top of the potential well. 

6. Discussion and conclusions 

The classical path method has been shown to provide an effective and physically clear 
method of obtaining the band structure for the periodic potential, provided the energy 
is sufficiently below the top of the potential ( E  =2w2/h) .  This limitation is by no 
means intrinsic to the method. However, in this case it is rather difficult to extend the 
method outside this region. (It is even quite difficult for the quadratic barrier [4]. 
Also, see [8] for the result in this region.) The aim of this paper has been to clearly 
display the semiclassical aspects of the result in the context of the path integral. 

The instanton approach is also a path integral method for obtaining these results 
for the ground state only. This method concentrates on a special subset of classical 
solutions, the zero-energy solutions which tunnel from the bottom of one well to a 
neighbouring one. The Euclidean time Feynman propagator, K,  for this solution now 
forms the basis of the approximation. Individual instantons (and anti-instantons) are 
viewed in the large-time limit as well localised objects. Now, other approximate 
solutions to the classical equations of motion consist of widely separated strings of 
instantons and anti-instantons. This construction is very similar to the path decomposi- 
tion and sum presented in 0 5.1. However, there are some important differences. In 
the instanton approach the allowed energies E, are found from the large Euclidean 
time T = iT behaviour of the Feynman kernel [7, 191. For the periodic potential this is 

I +a +a3 c exp(in8) Tr K,  = exp(in8) d4 ,  K,(4,= c$~, 41; 4 7 )  

= 1 exp( - ~,(6)7/h) 

n=--00 --oc 

n 

where K, is the Feynman kernel for winding number n. The non-Gaussian integration 
over 4, is done by replacing it by an integral over collective coordinates. We note that 
the classical path method avoids this step because the energy levels are obtained from 
the poles of the energy propagator. 
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Also, the instanton technique neglects any possible interaction between instantons, 
whereas the classical path approach includes all possible interactions. Zinn-Justin (19) 
has shown how to incorporate some instanton interactions. This modification of the 
instanton method gives results for the higher energy levels identical to formula (5.17). 
However, near the top of the potential well, naive considerations would anticipate that 
the instantons would disappear or become irrelevant, while the classical path method 
remains valid. Unfortunately, the approximation that the tunnelling factor A be large 
excludes this region. 

Lowe and Stone [17] have obtained the second term in the asymptotic expansion 
for the ground-state bandwidth, from a 'two-loop' calculation about the instanton 
(without any instanton interaction). As noted earlier, our results (5.17) include a 
similar but smaller correction. To obtain improved results the classical path method 
must be extended beyond a leading-order asymptotic expansion. 

Instantons have become of special interest in recent years because of their applica- 
tion to field theory [7, 111. The classical path method generalises this approach and 
is in many ways simpler. However, the attractive feature of the instanton approach 
has been its application to field theory. Here attention is focused on instantons, which 
are finite action solutions to the Euclidean equations of motion. (This corresponds to 
restricting attention to zero energy for quantum mechanics.) The classical path method 
suggests that interest is widened to look for solutions of the field equations which have 
finite action in finite 4-volume. 

Appendix. Exact expression for zero winding number kernel 

Figure 12 shows the simplest paths of type I. Recall, from § 4, that the sum of real 
bounces from opposite sides of the potential give a contribution to the energy Green 
function of (1/2 cos we) .  In contrast, those paths starting and ending on the same side 
of the potential give (sin we/2 cos we) .  We require to make a systematic expansion in 
terms of the number of transits through the forbidden region. Figure 13 gives a diagram 
for this, with 2n full passages through the forbidden region and 2 m  changes in direction. 
Obviously, there must be at least one change in direction (if n # 0) and a maximum 
of n. For the right motion there is a total of (n + 1) possible links (i.e. successive right 
motion or a gap region of left motion) and m gaps. Thus the number of possible 
combinations is (":'). 

m gaps (n  + 1) l inks  

+ ..... h ...... p!Jy' 
T 

? m  
aiternations 

I L - l  -L-L ....., .....* I- -I, - J  

lm-11 gaps ( n - m i l i n k s  

Figure 13. A diagram illustrating an example of paths with 2 n  transits through the forbidden 
region with 2m changes in direction. Each spot on the top line represents a step to the 
right, while a spot on the bottom line corresponds to a leftwards step. The start and end 
positions also correspond to a spot on the top line. 
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In the same way, for left motion there are ( n  - 1 )  links and ( m  - 1) gaps, giving 

We note the important identity 
( " - 1 )  m-l = ( "-,,, n - 1 )  combinations. Thus, the total number of possibilities is ('';')(;I;). 

m = l  t (y)( n - m  n - 1 )  =(;). 
The right-hand side represents the total number of independent ways of making 2 n  
transits through the forbidden region, as shown in Q 5 .  

The complete propagator for winding number zero and paths of type I is therefore 
X 

~h(4 f ,  4i; E )  = ~ ~ ( 4 f ,  4i; E ) {  1 + c e x p ( - 2 n ~ )  
n = l  

[ m . l  (n; I ) (  n - I ) (  sin w, ) 2 m (  1 ) 2 ( " - m ) ] }  

n - m  2cosw, 2cosw, 

where G: is given by equation (4.3). Rewriting the expression in square brackets as 

sn= ( n:1)(-)2m[izl( n i 1 ) ( - ) 2 k 8 n - m - k ]  1 (A2) 
m = l  2 cos w, 2 cos w, 

facilitates the summation over m. This is achieved by writing the Kronecker delta 
function as 

+ r r  

S n - m - k -  -'I 27r -f f  dB exp[ie(n - m - k ) ] .  (A31 

Extending the summation ranges by making use of the delta function we obtain 

1 +lr n + 1 sin2" exp(i6)) [ ~1 ( n  ; 1) ( exp(i6) ) '1 
4 cos2 w, k = O  4 cos2 w, 

$,=-I 2T --Ti dBexp(inB)T1 m =O ( )( 
(A41 

Writing z =e" we can express the result as either a contour integral about the unit 
circle or an n-fold derivative, 

( z +  1 / 4  cos2 w,)n-L(z+sin2 w,/4 cos' w,)"+ '  
Z n + l  (A5a) 

The summation over n is now difficult without some simplification. The approximation 
cos w, = O  considered in 8 5 suggests that we write 

Now the first term in (A6) is much the largest in the approximation regime we are 
considering. This suggests the expansion 

=(:)(L)2n-(T)(2nn-1)(L) 2(n-1)  +. . . .  (A7) 

2 cos w, 2 cos 0, 
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The first term is the approximation considered in 5 5. Substituting the approximate 
solution (5.12) into this expression we see that the neglected term is smaller by a factor 
e-2A. This justifies the simplifications made in 0 5. 
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